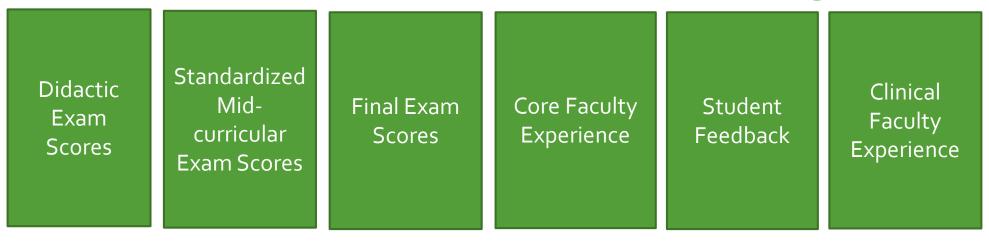
Bridging the Gap in Student Learning Through Simulation Immersion Mapped to Curriculum Content

KATHERINE ADAMS, DNP, RN KAREN BRITT, DNP, RN-BC, CNE NURSING EDUCATION RESEARCH CONFERENCE

MARCH 27, 2020

The presenters do not have any conflict of interest to report.

Learning Objectives


At the end of this session the learner will be able to:

- Verbalize ways in which educators can identify gaps in student knowledge utilizing curricular exams and standardized testing.
- Describe how to bridge student knowledge gaps identified through curricular and standardized testing utilizing simulation.
- Discuss best practices for implementing simulation.

Nursing Program Used for Project

- 16 month accelerated post baccalaureate BSN program
- Northeast US

Assessment of Student Knowledge Gaps

Objective Measures

- Didactic Exam Scores
- Standardized midcurricular
 Examinations
- Final Exam Scores

Subjective Measures

- Core Faculty Experience
- Clinical Faculty Experience
- Student Feedback

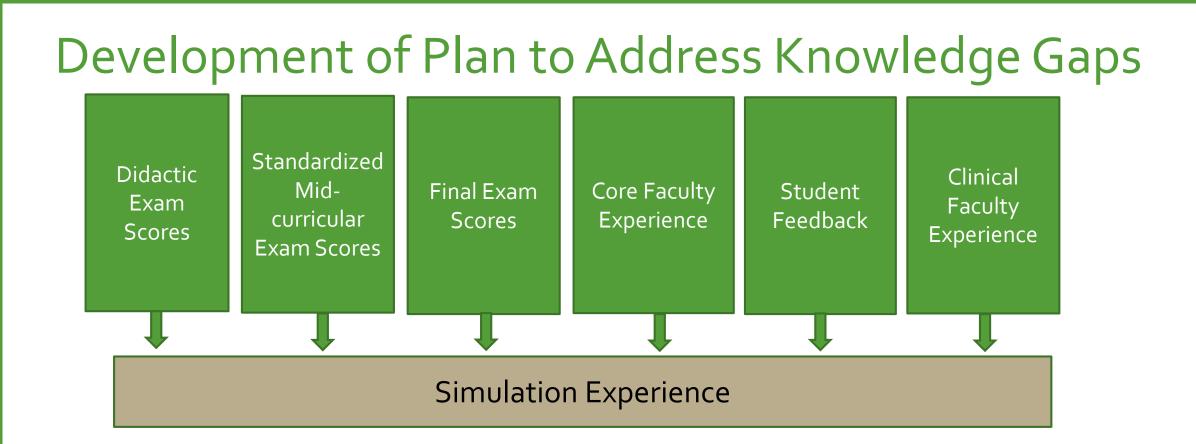
Health Education Systems, Inc.® (HESI)

- HESI scores predict success on the National Council Licensure Examination for Registered Nurses (NCLEX-RN)(Barton, Wilson, Langford, & Schreiner, 2014).
- Faculty is tasked with finding meaningful ways to address knowledge gaps identified by standardized testing (Sportsman, 2018).
- Students are expected to transition seamlessly into practice upon graduation with basic knowledge and skill for safe patient care (Distelhorst & Wyss, 2013).

Evidence Based Strategies

- Evidence shows that didactic teaching methods alone do not adequately prepare students for clinical or nursing knowledge retention (Merriman, Stayt, & Ricketts, 2014).
- The best educational practice is to include a variety of methods that actively involve and engage students to collaborate (Parker, McNeill, & Howard, 2015).

Evidence Based Strategies

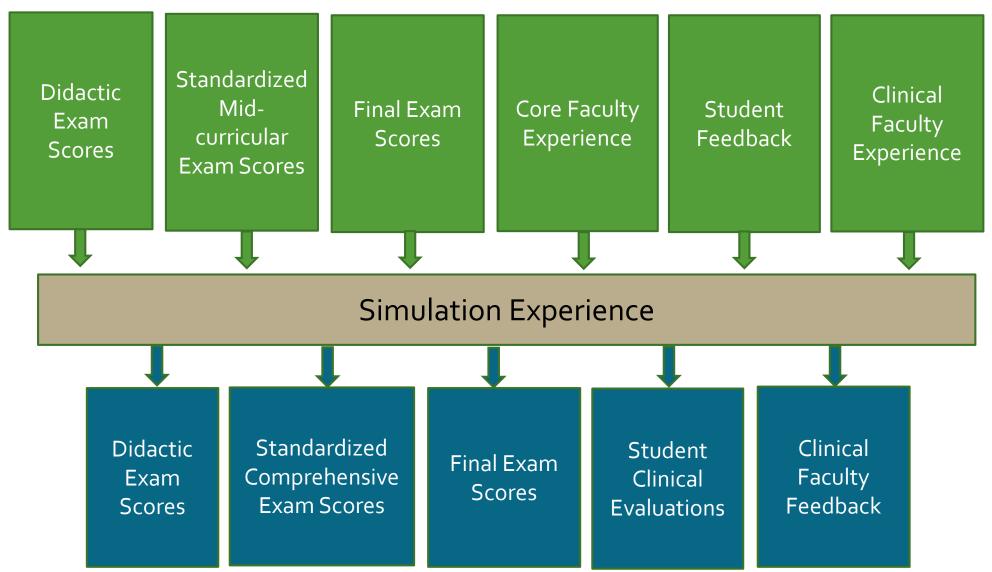

- Simulation is an educational alternative that can effectively bridge the gaps between didactic learning and clinical practice and improve student knowledge using technology (Pinar, Abay, & Akalin, 2016a).
- Research shows that the use of simulation is one method that positively impacts standardized test scores (Sarasnick, Pyo, & Draper, 2017).

Simulation

- Simulation has been documented as a strategy to provide focused learning activities for nursing students over the last decade (Scherer, Foltz-Ramos, Fabry, & Chao, 2016).
- Simulation is a safe way to allow students to make mistakes and learn from other students in a variety of traditional and non-traditional settings (Distelhorst & Wyss, 2013; Herron, Nemith, & Powers, 2017).
- Up to 50% of clinical can be effectively substituted with simulation to provide quality clinical experience (Sarasnick, Pyo, Drapper, 2017).

Simulation Cont.

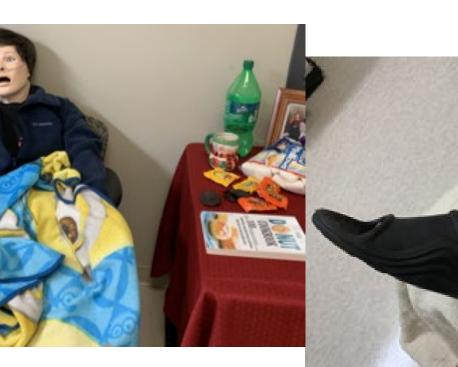
- Simulation can enhance student learning, skill, and confidence surrounding topics found in clinical practice (Pinar, Akalin, & Abay, 2016b).
- Providing opportunities for students to practice what they learn didactically improves critical thinking and reasoning and allows students to learn from their mistakes (Scherer, Foltz-Ramos, Fabry, & Ying-Yu, 2016).



Strategies for Simulation

- Best educational practice is to include a variety of methods that actively involve and engage students to collaborate (Parker, McNeill, & Howard, 2015).
- Simulation improved student confidence to provide quality care in clinical settings (Scherer et al, 2016).

- Small & large group discussion
- Unfolding case studies
- Table top exercises (Martin, Furr, Lane, & Bramlett, 2016).
- Audio and/or Video case studies
- Realistic simulated practice environments (Yeager, 2010).
- Standardized patients, role play (Skinner, 2017).
- Debriefing-clinical judgement (Sarasnick et al., 2017).


Evaluation

Pilot

- Based on the data collected, faculty from the community health courses created an innovative strategy for implementing a simulation immersion following the presentation of didactic content in each course.
- The simulations allowed students the opportunity to fully explore topics identified as knowledge gaps in the curriculum.
- The simulation immersion occurred prior to content exams, standardized testing, and clinical experience in each course.

COMMUNITY/ PUBLIC HEALTH COURSE

Gaps Identified Pre-SIM From Community Health HESI Final

Торіс	Fall 2016	Spring 2017
	Pre SIM (N=35)	Pre SIM (N=23)
Glucose Regulation	675	689
Intracranial Regulation	672	682
Oxygenation-Gas Exchange	904	771
Perfusion	772	762
Immunity	737	987
Mood & Affect	413	330
Care Coordination	655	821
Advocacy	751	810
HESI Mean	867	898

Simulation Plan

Week 1 Disaster	Week 2 Henry Williams (modified from NLN ACES)	Week 3 Family (4 family members to go community clinical for treatment)	Week 4 Red Yoder (modified from NLN ACES)	Week 5 Hospital ER Discharge
 Disaster management Triage Outbreak surveillance Bioterrorism Prioritization of Care NIMS training certificate 	 Respiratory Assessment & intervention SBAR lab results Psychosocial Assessment Med Reconciliation Discharge Education Care Coordination 	 Immunizations Lead & TB Assessment, screening, & education Direct Observation Infection Control Growth & Development screening Environmental risk assessment Levels of Prevention Care Coordination 	 Wound care SBAR Foley insertion Sepsis management Care Coordination 	 Case management Discharge planning Home safety/fall evaluation Elder abuse

Evaluation of Gaps Post-SIM From Community Health HESI Final

Торіс	Fall	Spring	Fall	Spring
	2017	2018	2018	2019
	Post SIM	Post SIM	Post SIM	Post SIM
	(N=55)	(N=30)	(N=62)	(N=35)
Glucose Regulation	995	1031	1007	962
Intracranial Regulation	838	892	885	854
Oxygenation-Gas Exchange	768	764	1092	970
Perfusion	809	1000	1063	959
Immunity	1023	1095	1093	1076
Mood & Affect	916	Not tested	956	866
Care Coordination	861	905	981	980
Advocacy	924	1115	922	923
HESI Mean	913	1020	988	970

Evaluation: Clinical Faculty Perspective

- Helping students apply concepts discussed in class to patient scenarios.
- Big picture
- Med reconciliation
- Debriefing
- Quality, not quantity of simulation is the key to successful student learning (Sarasnick et al., 2017).

Evaluation: Student Perspective

- Very receptive and vocal about the benefits of simulation in this course.
- Enjoyed activities that they have not had opportunities to do in depth before including SBAR, documentation, getting and giving report.
- Simulation was structured, realistic, and was a great way to apply concepts from class and previous courses into real life situations.
- Liked debriefing where they had the opportunity to share their ideas and thoughts on the scenarios.
- All students could benefit from hearing ideas that they may not have thought of on their own.
- Allowed to make mistakes and learn from others in a safe environment.

MEDICAL SURGICAL NURSING I

Assessment of Student Knowledge Gaps

Pathopharmacology HESI Final

Iron Supplement Admin- 50.8%
Osteoporosis- 60.7%
Potassium & Digoxin- 32.8%
Analgesic Tolerance Assessment- 55.7%
Heart Failure Patho- 72.1%
Immunity vaccine- 59.0%
Cirrhosis- 29.5%
Digoxin & Kidneys- 26.2%
Ammonia- consciousness- 31.1%

Health Assessment HESI Final

Melena- 58.8%

Dysuria- 17.6%

Assess Muscle- 38.3%

Audible Wheeze- 44.1%

JVD Assess- 44.1%

Orthopnea- 44.1%

Vesicular Lung Sounds- 52.9%

Previous HESI Med-Surg I Finals

Safety-Asst Devices- 34.4%

DJD 67.2%

Post-Op Ambulation- 46.9%

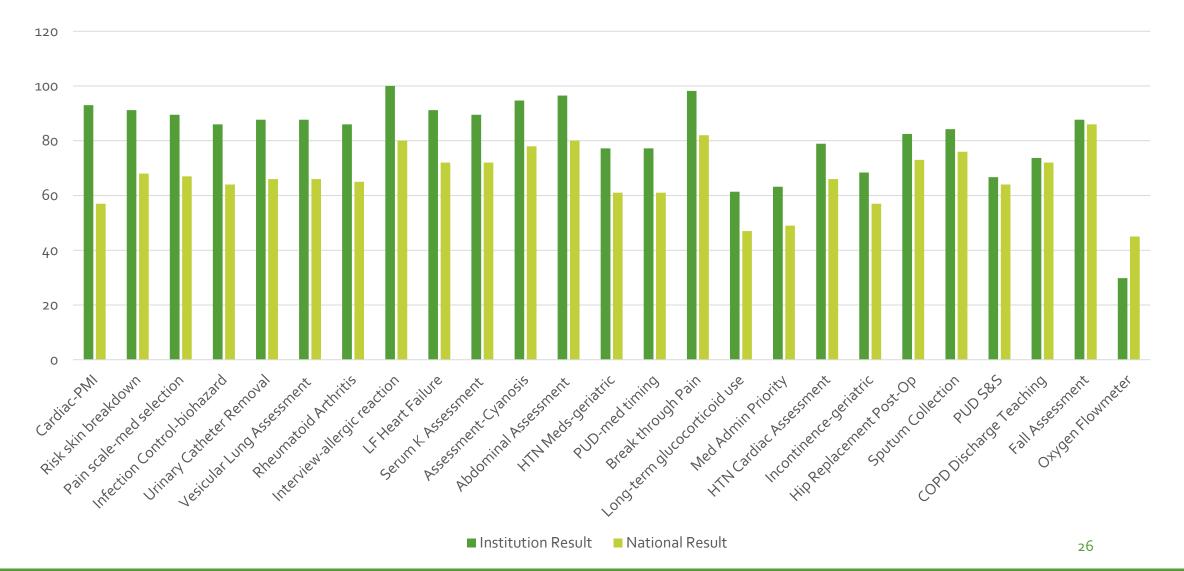
Post-Op Bleeding- 26.6%

Thick secretions- 45.3%

Hepatitis C- 45.3%

Digoxin Toxicity- 40.6%

COPD & Infection- 79.7%


HF, emergency sign- 68.8%

Simulati	on Plan	Sim 5: UTI	Sim 7: Post-Op DVT	Sim 9: Upper GI Bleed
Sim 1: Pneumonia • Initial signs of hypoxia • Oxygen delivery device • Vital signs	Sim 4: Digoxin Toxicity - Hypokalemia - Hypertension - Heart Failure - Med Education - Safety	 s/s of UTI Urine specimen Culture & sensitivity results Question appropriateness of catheter 	 Focused assessment SBAR Implement orders Pa. education Assistive Devices Osteoarthritis Joint replacement 	 Rheumatoid arthritis Osteoporosis PUD LT steroid use Medication safety Melena Hematemesis Hypovolemia
Sim 2: COPD w/ PNU	Sim 4: Heart Failure	Sim 6: Urolithiasis	Sim 8: Surgical Wound Infection	Sim 10: Pancreatitis • Alcohol induced
 Thick secretions Medication administration Pain assessment 	 Fluid volume overload Pinky, frothy secretions Independent Nsg Intervention 	 Pain management NSAID vs narcotics Renal colic Incontinence 	 S/s Infection Wound assess Labs & culture Pain management SBAR ORIF 	 hepatitis w/ cirrhosis Pain management Hyperglycemia Medication Admin Appropriate diet Labs

Evaluation: Medical-Surgical I Final Exam

Topic	Previous Final (%)	Final Exam Results (%)	Difference
Post-Op Bleeding	26.6	88.6	62
Thick secretions	45.3	100	54-7
Safety-Assistive Devices	34.4	82.9	48.5
Hepatitis C	45.3	90.5	45.2
Post-Op Ambulation	46.9	71.4	24.5
Degenerative Joint Disease	67.2	91.4	24.2
COPD & Infection	79.7	100	20.3
Heart Failure, emergency sign	68.8	71.4	2.6
Digoxin Toxicity	40.6	8.6	-32

Evaluation Mid-Curricular HESI Exam

Evaluation: Clinical Faculty Perspective

- Students have more thorough assessments
- Better prepared for patient interaction
- More active in implementing nursing interventions
- Critical thinking has improved
- More ownership and autonomy of patient care

Evaluation: Student Perspective

- "I can't overstate how helpful these sims are!"
- "I appreciated the realistic-looking vomit."
- "I thought the sim content was quite relevant to everything we went over in class."
- "The simulation content was presented just how we were taught in lecture. It was really helpful when we got to discuss the possible interventions and actions to take related to each case."
- "This simulation was enjoyable and a great learning experience as always. I enjoy how the simulations require us to recall skills we have previously learned and then also pull in what we have learned recently. I really enjoy how they are comprehensive but focused on the learning and not the grade."

Limitations of Pilot

- Inconsistent implementation across program
- Based on faculty observation & interpretation of HESI/didactic test scores
- Conducted at one university
- Sample size

Implications for Nursing Educational Practice

- Case studies and simulation mimic patient situations, thus increase retention of nursing care concepts (Sarasnick et al., 2017).
- Knowledge retention increases for those in the simulation and those who observed the simulation (Scherer et al, 2016).
- Simulation increases confidence, problem solving, clinical judgement, and learning transfer to clinical and testing (Merriman et al., 2014)
- Utilizing technology to incorporating simulation across the didactic curriculum prior to exams, has the potential to link theory to practice and improve critical thinking skills, as well as prepare students for success on the NCLEX exam.

Implications for Future Practice

- Educators may find simulation is effective for increasing student learning (Herron et al., 2017).
- Simulation can be a very useful method to address gaps identified during HESI testing while assisting students in preparing for patient care in a variety of non-traditional settings (Sarasnick et al., 2017).
- Allowing students the opportunity to apply concepts can improve retention of material and improve testing scores.

Questions?

Thank you! Have a great day!

References

- Barton, L., Wilson, P., Langford, R., & Schreiner, B. (2014). Standardized predictive testing: Practices, policies, and outcomes. Administrative Issues Journal, 4(2), 68-75. doi: 10.5929/2014.4.2.2
- Distelhorst, K. S., & Wyss, L. L. (2013). Simulation in community health nursing: A conceptual approach. Clinical Simulation in Nursing, 9(10), e445-e451. doi: 10.1016/j.ecns.2012.07.208
- Herron, E. K., Nemeth, J., & Powers, K. A. (2017). Community health simulation with a standardized patient: Exploring the experience. Clinical Simulation in Nursing, 13(7), 331-337. doi: 10.1016/j.ecns.2017.05.011
- Martin, D. R., Furr, S. B., Hayes Lane, S., & Bramlett, M. (2016). Integration of leadership competencies in a community health simulation. British Journal of Nursing, 25(14), 792-4. doi: 10.12968/bjon.2016.25.14.792
- Merriman, C. D., Stayt, L. C., & Ricketts, B. (2014). Comparing the effectiveness of clinical simulation versus didactic methods to teach undergraduate adult nursing students to recognize and assess the deteriorating patient. *Clinical Simulation in Nursing*, 10(2014), e119-e127. doi: 10.1016/j.ecns.2013.09.004
- Parker, R. A., McNeill, J., & Howard, J. (2015). Comparing pediatric simulation and traditional clinical experience: Student perceptions, learning outcomes, and lessons for faculty. Clinical Simulation in Nursing, 11(3), 188-193. doi: 10.1016/j.ecns.2015.01.002
- Pinar G., Abay, H., & Akalin, A. (2016a). The effect of scenario-based simulation training technology on knowledge and skills of maternity nursing students in Turkey. International Journal of Development Research, 6(6), 8096-8101. doi: 10.19044/esj.2016.v12n15p394
- Pinar, G., Akalin, A., & Abay, H. (2016b). The effect of video based simulation training on neonatal examination competency among Turkish nursing students. European Scientific Journal, 12(15), 394-405. doi: 10.19044/esj.2016.v12n15p394
- Sarasnick, J. A., Pyo, K. A., & Draper, J. (2017). Using Simulation and case studies combined to improve student knowledge: A retrospective study. Nursing Education Perspectives, 38(3), 126–130. doi: 10.1097/01.NEP.00000000000039
- Scherer, Y. K., Foltz-Ramos, K., Fabry, D., & Ying-Yu, C. (2016). Evaluating simulation methodologies to determine best strategies to maximize student learning. Journal of Professional Nursing, 32(5), 349-357. doi: 10.1016/j.profnurs.2016.01.003
- Skinner, H. M. (2017). Simulation: Preparing nursing students to work with community-dwelling older adults. Clinical Simulation in Nursing, 13(10), 520-523. doi: 10.1016/j.ecns.2017.04.012
- Sportsman, S. (2018). Improving student outcomes with data Just use it! Elsevier. Retrieved from https://evolve.elsevier.com/education/hesi/sportsman-blog-improving-outcomes-with-HESI-data/
- Yeager, S. T., & Gotwals, B. (2010). Incorporating high-fidelity simulation technology into community health nursing education. Clinical Simulation in Nursing, 6(2), e53-e59. doi: 10.1016/j.ecns.2009.07.004