

Association of Apolipoprotein E Genotype with Activities of Daily Living After Aneurysmal Subarachnoid Hemorrhage

PINE CANAL STREET OF THE STREE

Eleanor Turi, SN; Ansley Grimes Stanfill, PhD, RN; Elizabeth Crago, PhD, RN; Sheila Alexander, PhD, RN; ;Samuel Poloyac, PhD, PharmD; Paula R. Sherwood, PhD, MSN, BSN, RN, CNRN, FAAN; Lacey Wright, BSN, BS, RN; Yvette Conley, PhD

Background

- Aneurysmal subarachnoid hemorrhage (aSAH) affects approximately 30,000 individuals in the US every year¹
- aSAH has an extremely high mortality rate (up to 50%) and only 60% return to a functional, independent state post-stroke^{2,3}
- Apolipoprotein E (apoE) is a protein that facilitates lipid transport and aids in neuronal repair within the CNS (likely candidate to predict functional outcome post-aSAH) and is coded for by the apolipoprotein gene (APOE)⁴
- There are three known alleles (E2, E3, and E4) which can be combined to form six different genotypes (APOE 2/2, APOE 2/3, APOE 2/4, APOE 3/3, APOE 3/4, and APOE 4/4)⁵

- E4 allele associated with worse functional outcomes after intracranial hemorrhage and traumatic brain injury, but has no association to functional outcome in ischemic stroke and aSAH ^{6,7,8, 13}
- Ability to perform activities of daily living (ADLs) is a significant indicator of quality of life and independence post-stroke⁹
- A significant association between the presence of allele E4 and ability to perform ADLs has previously been shown in a mild-cognitive impairment population^{10,11}
 - The relationship between the presence of E4 allele and ability to perform ADLs postaSAH has not been previously explored

Purpose

 The purpose of this study was to examine the relationship between APOE genotype and ability to perform ADLs in persons with aSAH

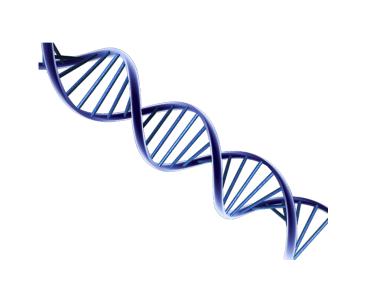
Population

- Subjects were prospectively recruited as part of an ongoing NIH-funded study approved by the IRB
- Patients were included in the study if they were
 - Between the age of 18 and 75 years old
 - Diagnosed with aSAH verified with cerebral angiogram
 - Able to read/speak English
 - Had no previous history of neurological disorders

Population Characteristics (n=382)

Gender Female 69.9%, n=267
Race White 89%, n=340
Hunt and Hess (HH) Mean 2.65
Score

Methods


- Genotypes were classified based on the presence or absence of at least one APOE E4 allele
- Ability to perform ADLs was evaluated via home visit 3 and 12 months postaSAH using Barthel Index (BI) score
- BI score calculates a composite measure of ability to perform ADLs including functions such as toileting, dressing, mobility, transfer, and grooming, among others
- Multivariate linear regression was performed to determine the relationship between APOE genotype and outcome variability in BI scores controlling for age, sex, and severity of clinical condition (HH score)

Results

- No significant association was found between APOE genotype and BI score at 3 and 12 months post-aSAH (p=0.88 and p=0.95)
- A significant association was found between HH score and BI score at 3 months (p<0.01), which neared significance at 12 months (p=0.05)

Conclusions

- APOE genotype does not appear to have a significant impact on ability to perform ADLs post-aSAH
- These results support findings from Wagle et. al (2010) who found no significant relationship between *APOE* genotype and ability to perform ADLs after ischemic and hemorrhagic stroke¹²
- HH score does appear to have an association with ability to perform ADLs, which supports existing literature suggesting initial clinical condition is a significant predictor of functional outcome
- We are in the process of adding more subjects to the analysis
- Results from this study adds to the mixed evidence regarding the relationship between APOE genotype and functional outcome post-aSAH, warranting a need for further exploration of genotype as a predictor of outcome variability

References

Connolly, E. S., Jr., Rabinstein, A. A., Carhuapoma, J. R., Derdeyn, C. P., Dion, J., Higashida, R. T., . . . Council on Clinical, C. (2012)

uidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Hear de Rooij, N. K., Rinkel, G. J., Dankbaar, J. W., & Frijns, C. J. (2013). Delayed cerebral ischemia after subarachnoid hemorrhage: a systematic review of clinical, laboratory, and radiological predictors. Stroke, 44(1), 43-54. Zacharia, B. E., Hickman, Z. L., Grobelny, B. T., DeRosa, P., Kotchetkov, I., Ducruet, A. F., & Connolly, E. S., Jr. (2010). Epidemiology of aneurysmal subarachnoid hemorrhage. Neurosurg Clin N Am, 21(2), 221-233. doi:10.1016/j.nec.2009.10.002 Laskowitz, D. T., Horsburgh, K., & Roses, A. D. (1998). Apolipoprotein E and the CNS response to injury. J Cereb Blood Flow Metab, 18(5) Mahley, R. W. (1988). Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science, 240(4852), 622-630 James, M. L., Blessing, R., Bennett, E., & Laskowitz, D. T. (2009). Apolipoprotein E modifies neurological outcome by affecting cerebral edema but not hematoma size after intracerebral hemorrhage in humans. J Stroke Cerebrovasc Dis. 18(2), 144-149. doi:10.1016/ Li, L., Bao, Y., He, S., Wang, G., Guan, Y., Ma, D., . . . Yang, J. (2015). The Association Between Apolipoprotein E and Functional Outcome After Traumatic Brain Injury: A Meta-Analysis. Medicine (Baltimore), 94(46), e2028. doi:10.1097/MD.000000000002028 genotype and functional outcome following ischemic stroke. Arch Neurol, 57(10), 1480-1484. Taufique, Z., May, T., Meyers, E., Falo, C., Mayer, S. A., Agarwal, S., . . . Schmidt, J. M. (2016). Predictors of Poor Quality of Life 1 Year After Subarachnoid Hemorrhage. *Neurosurgery, 78*(2), 256-264. doi:10.1227/NEU.00000000000104 10. Bonner-Jackson, A., Okonkwo, O., Tremont, G., & Alzheimer's Disease Neuroimaging, I. (2012). Apolipoprotein E epsilon2 and functional decline in amnestic mild cognitive impairment and Alzheimer disease. Am J Geriatr Psychiatry, 20(7), 584-593. doi:10.1097/JGP. 1. Okonkwo, O. C., Alosco, M. L., Jerskey, B. A., Sweet, L. H., Ott, B. R., Tremont, G., & Alzheimer's Disease Neuroimaging, I. (2010). Cerebra

atrophy, apolipoprotein E varepsilon4, and rate of decline in everyday function among patients with amnestic mild cognitive impairment. *Alzheimers Dement*, *6*(5), 404-411. doi:10.1016/j.jalz.2010.02.003
12. Wagle, J., Farner, L., Flekkoy, K., Wyller, T. B., Sandvik, L., Eiklid, K. L., . . . Engedal, K. (2010). Cognitive impairment and the role of the ApoE epsilon4-allele after stroke--a 13 months follow-up study. *Int J Geriatr Psychiatry*, *25*(8), 833-842. doi:10.1002/gps.2425
13. Gallek, M. J., Conley, Y. P., Sherwood, P. R., Horowitz, M. B., Kassam, A., & Alexander, S. A. (2009). APOE genotype and functional outcome following aneurysmal subarachnoid hemorrhage. *Biol Res Nurs*, *10*(3), 205-212. doi:10.1177/1099800408323221